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Abstract 

We propose to develop a mathematical model for the electrokinetic remediation of con- 
taminated soil. We assume that the contaminants are mostly heavy metals, water is in excess, 
the dissociation-association of water into hydrogen and hydroxyl ions is rapid, and that 
electroosmosis is insignificant when compared to electromigration as a transport mechanism. 
Steady-state solutions for the model are derived and results of the numerical simulations are 
given to show that heavy metals in the soil are removed by this method in the long run. 
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1. Introduction 

Heavy metallic ions such as cadmium, chromium and lead are hazardous to 
humans’ health. They can frequently be found in the groundwater of contaminated 
sites reacting with chemicals in the solutions, or, they can form chemical complexes 
with minerals such as iron and manganese oxides inside the soil and reside on the 
mineral surface [l]. It is important to have these ions removed. 

The remediation of contaminated soil and groundwater in the subsurface have been 
and will continue to be the most costly and time consuming part of any site cleanup. 
In situ technologies for removing contaminants are preferred because they are more 
economical and also because of the declining number of land-fill sites which accept 
toxic material. In addition, such methods cause minimal environmental disruption. 
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One way of treating the soil is to ‘wash’ out the contaminated groundwater and the 
metallic ion complexes adhered to the soil surface (flushing). Fine-grained soil has 
greater ability to adsorb contaminants and flushing is not an efficient method because 
the hydraulic gradient required to pump water through fine-grained soil is very high. 
Therefore, alternative methods have to be developed. 

An alternative method is to insert electrodes into the soil and apply an electric 
potential across the electrodes. The electric field causes the metallic ions to migrate to 
the cathode, thus accelerating the decontamination process. This is known as elec- 
trokinetic soil remediation [a]. This process is found to be relatively insensitive to the 
pore size of the soil and hence suitable for treatment of fine-grained soil. Pilot 
experiments and large scale in situ trials have been conducted using this method 
[3-61. A summary of the advances in the field until 1993 is presented in Ref. [7]. 

The principal mechanisms for the electrokinetic transport process are diffusion, 
electromigration, convection, electroosmosis and isoelectric focusing. Diffusion and 
electromigration will be explained later in the next section. As our focus here is on 
fine-grained soil remediation, the fluid flow is very slow and we shall assume that the 
convection velocity is zero. Electroosmosis is due to the drag interaction between the 
bulk of the liquid in the pore and a thin layer of charged fluid next to the pore wall 
[7, S]. Depending on the circumstances, electroomosis may or may not be important 
compared to electromigration. If the soil pH is low and the contaminants are charged, 
then very little electroosmosis transport occurs [8]. We shall assume this to be the 
case in our paper. Finally, isoelectric focusing is caused by a sharp jump in the soil pH 
moving from the anode to the cathode side. The metals near the cathode may become 
negatively charged, move towards the anode and eventually accumulate near the pH 
jump resulting in isoelectric focusing. One can prevent this from happening by rinsing 
the cathode frequently to wash away the hydroxyl ions generated by electrolysis [3]. 

Modeling electrokinetic soil remediation involves understanding the above trans- 
port mechanisms, interactions of the metallic ions with the minerals in the soil 
(sorption), and what happens at the electrodes. The electrodes are usually surrounded 
by a circulation system where fluids are passed through to wash out the contaminants. 
The contents of the fluid are adjusted so that the circulation system also acts as a pH 
control. We consider both cases in this paper, with or without a circulation system. 
The major difference between the two cases is the boundary conditions imposed at or 
near the electrodes which we discuss in Section 4. Section 5 contains the results of our 
numerical simulation and Section 6 contains a summary of the paper. 

2. The mathematical model 

Consider a mixture of charged particles, which we refer to as ions or species, inside 
the groundwater surrounding the contaminated soil. Two electrodes are placed inside 
the soil and an electric potential is maintained across them throughout the transport 
process. 

Let the molar concentrations of the charged species be denoted by ul, . . . , u, and 
let the electric potential be denoted by 4. Each species has a characteristic mobility 
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constant pi such that its velocity under the influence of the electric field is given by 
- pLiziV4 where Zi is its charge. The charge zi must be integer valued and may be 

positive, negative or zero. The species also diffuse with diffusion constant di > 0. 
Assuming that the transport of ions are governed by the dilute aqueous solution 
theory [4,8,9], the flux of species i is given by Ni = - diVui - ~iziUiV4. The two 
terms on the right-hand side of Ni model diffusion and electromigration, respectively. 
From the conservation of species, Ui(x, t) satisfies the transport equation 

&_ 
at 

--divNi+Ri, i=l,..., m, 

in a bounded region Q which contains the contaminated soil. The term Ri in (1) 
denotes the rate of production of species i due to reactions. In the definition Of Ni, we 
shall assume that the Nernst-Einstein relation pi = pdi holds for i = 1, . . . ,m where 
p is a positive constant. By absorbing p into 4, we may assume that ,U = 1. 

Remark 2.1. The symbol div in Eq. (1) is the divergence operator. Suppose f = ( fi, 

f 2, . . . ,f.) is a vector field defined in R”, then 

divf=g+g+ ?6n 
2 ... + ax,’ 

Remark 2.2. Since the soil particles hinder the diffusion and migration of ions, both 
the diffusion coefficient di and ionic mobility pi as measured in pure aqueous phase 
have to be reduced to some effective values when applied to our situation. Such 
reduction factors are related to the porosity and tortuousity factors of the soil [S]. 

The electric potential 4(x, t) is an unknown function in Eq. (1). It satisfies the 
Poisson’s equation, 

EAC#J = - e f ZiUi 
i=l 

where A is the Laplace operator, e > 0 is the molar charge and E > 0 is the permittivity 
of the solvent. Since the permittivity is small upon non-dimensionalization of the 
Eq., (2) is usually replaced by the electroneutrality condition 

m 

i&ziui = O. (3) 

We shall study Eqs. (1) and (3) in this paper. 
The electric potential C$ can be determined if all the U;S are known. To see this, 

multiply Eq. (1) by zi and sum over i. Then the electroneutrality condition and 
C ZiRi = 0 (charge conservation) imply that - div C ZiNi = 0. This is called the 
current equation which can be written as 

a(x, t)Aqb + b(x, t) - V4 + c(x, t) = 0 
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where u = 1 z?diai, b = 1 z:diVui, and c = C ztdtdut. If there is no circulation system, 
then the boundary conditions for the hydrogen and hydroxyl ions may be used as the 
boundary conditions for 4 (see (11)). If there is a circulation system, then 4 satisfies 
Dirichlet boundary conditions. Thus, 4 can be determined for each t > 0 if we know 
all the ui)s. 

Remark 2.3. Eqs. (l)-(3) have also been used by the authors to study an electrochem- 
istry model [lo, 111 and by the first author to study electroplating [12]. 

We now explain the term Ri in Eq. (1) which models the formation of complexes due 
to interactions of the metallic ions and the minerals in the soil [l, 131. For simplicity 
we restrict ourselves to a single reaction mechanism. Realistic chemistry can be 
incorporated in more sophisticated models. (In Ref. [l], a two-reaction mechanism 
was suggested. Usually such mechanism can explain the rapid retention and slow 
release of heavy metallic ions from the soil [14].) 

Let SOH denote iron oxide or manganese oxide in the soil. A typical metallic ion 
like cadmium will react with them according to the reaction 

SOH+Cd2+=SOCd+ +H+. (4) 

In the above reaction, SOCd+ represents precipitated complexes on the mineral 
surface. Assuming mass action kinetics, its reaction rate rl = k1[SOH][Cd2+] - 
k,[SOCd+][H+] where ki, k2 > 0. If the hydrogen ion concentration is increased, it 
will drive the above reaction to produce more soluble cadmium ions. This will allow 
easier extraction of metallic ions from the soil. In some laboratory experiments, this is 
achieved by purging acid solution around the cathode to increase hydrogen ion 
concentration [4]. 

Besides a possible external supply of hydrogen ions, there are two mechanisms that 
hydrogen ions can be generated or consumed in our model. One is through dissocia- 
tion-association of water molecules in the bulk of the groundwater and the other is 
through electrolysis at the boundary electrodes. This second mechanism affects the 
boundary conditions and we will discuss it after the governing equations have been 
formulated. 

The dissociation-association reaction of the water molecules is represented by 

H20=H+ + OH-. (5) 

We shall denote the reaction rate by Y,. Assuming mass action kinetic, 
r,,, = KJH,O] - K,[H+][OH-] where Kf and K, are positive constants. 

We are now ready to propose our model for the electrokinetic remediation of 
contaminated soil. All the ions in the aqueous phase and solid phase will be accounted 
for in this model. Let u1 be the concentration of water, u2 be the concentration of 
hydrogen ion, u3 be the concentration of hydroxyl ion, u4 be the concentration of 
cadmium ion, and u5 be the concentration of some other inert ion, say chloride. For 
simplicity, we shall assume that these are the only ions in the aqueous phase. Let us be 
the concentration of SOH, and u7 be the concentration of SOCd+. These are the only 
solid phase ions, which do not diffuse or migrate. Assuming the above, Ri in Eq. (1) can 
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be defined through ri and rw. The governing equations for our model are 

au1 
at- 

- -divN, -Y,, 

au2 
at- 

- - div N2 + r1 + Y,, 

au3 -= 
at - div N3 + r,,,, 

au4 
at- 

- -divN,-r,, 

aus -=- 
at 

div N,, 

au6 
at= -rl, 

au7 
at=rl, 

65 

(64 

(6b) 

(64 

(64 

(64 

(60 

(W 

VW 

where z1 = 0, z2 = 1, z3 = - 1, z4 = 2, zs = - 1, zg = 0, and z7 = 1. It should be 
pointed out that 4 is unknown in (6) so that there are eight equations and eight 
unknowns. 

Remark 2.4. Besides (4), other reactions may occur in the groundwater in the soil and 
cadmium may occur in other forms besides cadmium ions (see Ref. [15, Chapter 61). 
For example, cadmium may react with chloride ions according to the reactions 

Cd2+ + Cl- = CdCl+, 

CdCl+ + Cl- + CdC12, 

CdC12 + Cl- = CdCl; . 

If we include the above reactions in our model, then we have to introduce new 
variables for the species CdCl+, CdCl,, CdCl, , write down the reaction rates for the 
three reactions and include them in the calculations of R4 and R5. The results will be 
three additional equations in (6) and equations (6d), (6e) and (6h) have to be modified. 
However, there is no conceptual difference between analyzing the new system and (6). 
With proper boundary conditions, Cd 2t CdCl+, CdC12 and CdCl; can all be shown , 
to be removed in the long run. 
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3. Refined model 

Eqs. (6) are derived using the dilute solution theory. Since water is present in excess 
and may be regularly replenished, dilute solution theory may not hold. However, it 
does allow us to assume that water concentration is constant. In addition, the reaction 
rate r,,, = Krul - Q2+ is very rapid. Hence, equilibrium between water, hydrogen 
ion, and hydroxyl ion is attained instantaneously resulting in the equation 

[H+][OH-] = K,,,. 

where K,,, is a constant (at isothermal condition) that can be measured experimentally. 
Let E > 0 be a small parameter. (For example, we can take E to be the ratio of the 

total initial concentration of cadmium ions to that of the water molecules.) Since 
water is in excess, we may assume that its expansion in E is u1 = KJE + 0( 1) where K1 
is a positive constant and O(1) denotes a generic function bounded in x, t. If we 
substitute this expansion into (6a), we see that rw = 0( 1). Thus r,,, = 0 to order 0(1/a). 
From the definition of r,,,, u2u3 = (KfKJ(K,c) = K, which is Eq. @a). The concentra- 
tions of hydrogen and hydroxyl ions are of the magnitude O(1) so that Eqs. (6b) and 
(6~) are complicated by the fact that they involve the O(1) term of r,,,. To avoid this, we 
subtract the two equations to obtain Eq. (8b) below. Also, from (6), 

; (2.46 + 247) = 0 

so that ug(x, t) + u,(x, t) = g(x) where g is determined by the initial data. This allows 
us to drop the equation for ug in (6). Putting everything together, the governing 
equations for our refined model are 

~2~3 = K, (84 

f(~2-~3)= -divN, +divN, +ri (8b) 

au4 
at- 

- - div N4 - rl 

%= -divN 
at 5 

u2 - u3 + 2u4 - 245 + UT = 0 (80 

where ug = g(x) - u7 and r1 = kiU&$ - k2u7u2. Note that $J is unknown in (8) so that 
there are six equations with six unknowns. We now turn to the boundary conditions. 
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4. The boundary conditions 

Eqs. (8) have to be coupled with suitable initial and boundary conditions. Initial 
conditions must satisfy (8a) and the electroneutrality condition (8f). As for the 
boundary conditions, we assume that the contaminated region Sz is two-dimensional 
(see Fig. 1). If there is a circulation system, then there is an annulus surrounding the 
electrodes as shown in Fig. 1. Inside the annulus is the circulating fluid and ri, r, 
correspond to the interface between the soil and the annulus. If there is no circulation 
system, then the annulus should be removed in Fig. 1 and rr, r, correspond to the 
surface of the cathode and anode, respectively. 

The following facts are true regardless of whether there is a circulation system 
around the electrodes. First, since the equations governing the solid phase ions us and 
u7 do not involve any spatial derivatives, no boundary condition is needed for them. 
However, us, u7 can still depend on x. Second, at the outer boundary of 0, we assume 
that all the aqueous ions satisfy zero-flux boundary conditions; i.e. Ni en = 0 for 
i = 2,3,4,5 and x E r3 where n is the outward unit normal on r,. 

We now consider the boundary conditions near the electrodes. We first assume that 
there is no circulation system. Then at the surface of the anode, all aqueous ions except 
hydrogen and hydroxyl ions satisfy zero-flux boundary conditions. At the surface 
of the cathode, the same is true except for cadmium ions. When the cadmium ions 
arrive at the cathode, we assume that they are removed by electroplating, 
(Cd” + 2e- + Cd(s)), so that uq = 0 for xeT,. 

The predominant reaction at the electrodes is electrolysis [S]. These reactions are 
represented by 

2Hz0 - 4e- --) O2 + 4H+ (9) 

r2 

0 
0 
Anode 

Fig. 1. Cross section of contaminated site D with a circulation system. 
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at the anode and 

4H20 + 4e- + 2Hz + 40H- (IO) 

at the cathode. Since both oxygen and hydrogen gas escape once they are formed, the 
above reactions may be considered as irreversible. These reactions are modeled by the 
Butler-Volmer kinetics (see Case 1 below) which will provide the boundary conditions 
for water, hydrogen, and hydroxyl ions around the electrodes. We shall discuss 
Butler-Volmer kinetics in the appendix. 

Next we consider the case when there is a circulation system. Cadmium ions are 
washed away by the circulation system and hence uq = 0 at the interface. In order to 
avoid introducing new species into our model, we assume that the circulating fluid 
contains hydrochloric acid which is completely ionized: HCl + H+ + Cl-. Let the 
concentrations of the hydrogen, hydroxyl, and chloride ions in the circulating fluid be 
denoted by &, ui, and u’& respectively. Since u7 is governed by an oridnary differential 
equation which does not require any boundary condition, u7 can be solved and the 
solution depends on the concentrations of the other species. Knowing the pH of the 
fluid will allow us to calculate u$ which we can use to find uz, u: through the equations 
u$& = K, and ~4: - u!j - z& + z&’ = 0. As mentioned earlier, UC: at the interface is 
known in terms of other species concentrations. Thus, hydrogen, hydroxyl, and 
chloride ions satisfy Dirichlet type boundary conditions. Finally, from experimental 
measurements, we may assume that 4 is known at the interface. We now summarize 
the boundary conditions. Let El and E2 be the applied voltage on the electrodes at r1 
and r,, respectively, and let E2 > El. 

Case 1. No circulation system 

(N2 -N3)-n = %1(4(x, t) - Ed at rl, (114 

(Iv2 - N3).n = - WE2 - 4(x, t)) at r2, 

N4.n =0 at r,, uq=O at rl, 

(lib) 

(llc) 

N,.n=O at r,,r,, (1 ld) 

(N2 -N3)-n =O, N4-n =O, N,.n =0 at r3, (114 

where gl(4) = evh 4) - exp( - w$), Q, CI~ > 0 and g2 is similar function with 
different al, x2. 

Case 2. With circulation system containing HCl: 

u2 = u;, Us = u;, uq = 0, ug = u; at rl and r,, (I2a) 

4=E, at r,, 6 = ~52 at r2, W-4 

(N,-N,).n=O, N4-n=O, N,.n=O at r,. ww 



Y.S. Choi, R. LuilJournal of Hazardous Materials 44 (1995) 61-75 69 

Remark. Only three boundary conditions are needed for Eqs. (8) at each I’i, i = 1,2,3 
because none is needed for u, and the two algebraic equations. In Case 2 above, the 
boundary conditions for u2, u3 and ug constitute only one independent boundary 
condition since uzuJ = K, and u2 - ug - ug + u7 = 0. 

5. Steady-state solutions 

The steady-state solutions for Eqs. (8) are functions #i(x), i = 2,3,4, 5,7 and 4(x) 
which satisfy the equations 

u2u3 = Kw (134 

- div N2 + div N3 + r1 = 0, (13b) 

- div N4 - rl = 0, (13c) 

- div N5 = 0, 

Y1 = 0, 

r.42 - u3 + 2uq - us + u7 = 0, 

(13d) 

(13e) 

W) 

and the boundary conditions described in section 4. 

Case 1. No circulation system 

Let u = use -4. Then Vu = - e-@Ns. Since ug satisfies zero-flux boundary condi- 
tions at rl, r,, r3, v satisfies the condition Vu .n = 0 at the same boundaries. 
Furthermore, Eq. (13d) can be recast as div(e -4 Vu) = 0. Multiplying this equation by 
v and integrating over 52, we have, by the Green’s identity, 

s 
e# IVv1’dx = 0. 

n 

Therefore, Vu = 0 which implies that v is a constant and us = Ce”. To determine C, 
integrate (8d) over Sz. From the divergence theorem and our boundary conditions, we 
have 

Therefore, IQ ug dx is independent of time. Integrating us = Ce$ over 52, we have 
C = jQu,(x, 0) dx/J,e@‘“’ dx. 

To continue, since r1 = 0, Eq. (13~) reduces to - div N4 = 0. Let v = u4ezd, then 
v = 0 at r1 and Vu. n = 0 at r, and r3. Similar argument as above can be used to 
show that v = 0. Hence, uq = 0. 
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From r1 = 0 and its definition, u7u2 = 0. Since uz # 0, we have u7 = 0. Eqs. (13a) 
and (13f) now imply that 

u2 = (Ce” + JZZGZQ/2, 

u3 = (- Ce@ + ,/C2e2$ + 4KJ2. 
(14) 

From (13b), 4 satisfies the equation 

(&a2 + d3l43)Ll$ + V&42 + d3U3)‘Vq5 + (d&42 - a3 h43) = 0. 

The boundary conditions for 4 are given by (1 la) and (11 b) where 

N2 - N3 = - V&u2 - d3U3) - (d942 + d3U3)V$. 

One can express u2, u3 in terms of 4 in the above two equations using (14) and obtain 
an integro-differential equation in 4 because C contains I0 e4 dx. 

Case 2. With circulation system containing HCl 
The steady-state solutions are u2 = ui, u3 = uz, uq = 0, u5 = ug in Q and 4 satisfies 

theequationA~=Oin52,V~.n=OatT3,~=E,atT1,and~=E2atr2.Notethat 
the boundary condition V4 en = 0 at r3 comes from (N2 - N3) en = 0 at r,. 

6. Numerical simulation of the refined model 

In this section, we document the algorithm and results of our numerical simulation 
for Eqs. (8) under the two types of boundary conditions (11) and (12) in the one- 
dimensional case. We assume that Sz is the unit interval [0, l] with r, being x = 0 and 
r2 being x = 1. The voltages at x = 0 and x = 1 are El and E2, respectively, with 
E2 > El. 

Suppose Ui, i = 2,3,4, 5,7 are known at time t. We would like to find 4 at time 
t and use it to find ui, i = 2,3,4, 5,7 at time t + At. 

Case 1. No circulation system 
(i) From the current equation (see Section 2 after (3)), we have 

Jj2 dizi 2 + ( j2 diz?ui) g = 1(t) (15) 

where I(t) is the current at time t. Rearranging and integrating this equation from 0 to 
1, we have 

1 

4(1, t) 444 t) 

1 

- = l(t) s 0 C,Tc2 dizTui 

dx _ 1 Efc2diziz 

s 

dx. (16) 
0 I,:=, diZ,‘ui 
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2 

I.5 i- 
0. 2 4 6 

Fig. 2. Case 1: No cirulation system. The solid, dash and dot curves in each but the last plot represent the 
solutions on the domain [0, l] at t = 0,3,6, respectively. 

The terms inside the integrals are known since all the uI)s are known. This together 
with Eqs. (1 la) and (11 b) constitute 3 equations for the 3 unknowns &O, t), c$( 1, t) and 
I(t). After solving for these unknowns, 4(x, t) can be completely determined at time t. 

(ii) U&X, t + At) is found by advancing the ordinary differential Eq. (8~) for a time 
At with known initial condition u,(x, t). 

(iii) We can advance Eq. (8~) for time At from initial condition u,(x, t) and 
boundary conditions (11) to obtain u4(x, t + At). Throughout this process, we let C$ to 
be the 4(x, t) found in step (i). To avoid numerical instability, fully implicit scheme 
should be implemented on the diffusion term. 

(iv) A similar treatment as in (iii) gives u5(x, t + At). 
(v) With u4, u5 and u7 known at time t + At, then uz(x, t + At) and u,(x, t + At) can 

be found from algebraic Eqs. (8a) and (8f). 
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Fig. 3. Case 2: With circulation system containing HCl. The solid, dash and dot curves in each but the last 
plot represent the solutions on the domain [0, l] at t = 0, 3,6, respectively. 

Case 2. with circulation system containing HCl 
Since 4(0, t) = El and d(1, t) = Ez, Z(t) can be calculated from Eq. (16). Then 4(x, t) 

can be completely determined. Steps (ii)-(v) are similar to the algorithm with No 
Circulation System with obvious changes of boundary conditions for u4 and us. 

We now document the numerical results for Cases 1 and 2 in Figs. 2 and 3, 
respectively. Since our purpose is to illustrate how the algorithm works rather than 
compare the results with actual data, we let, for simplicity, gi(4) = g2(4) = 4, 
kI = kz = 1, K, = 1, El = 0, Ez = 1, dz = 2, d3 = 1, d4 = 0.5 and d5 = 1. We take the 
spatial mesh size Ax = 0.01 and the time step At = 0.001. In all numerical results we 
tested, the unsteady-state solutions will tend to the steady-state solutions given in 
Section 5 as time becomes large. Our numerical results also show that the cadmium 
ions are ultimately removed from the soil. 
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7. Summary 

In this paper, we developed a mathematical model for the electrokinetic remedi- 
ation of soil contaminated with heavy metals. We assumed that diffusion and elec- 
tromigration are the dominant transport forces for the aqueous ions in the soil, wrote 
down equations for both the aqueous and solid ions and arrived at a system of partial 
and ordinary differential equations coupled with an algebraic Eq. (6h). The electric 
potential 4 is an unknown function in this system. We then assumed that water is in 
excess and that the hydrogen and hydroxyl ions satisfy (7) in the soil resulting in an 
overdetermined system. Perturbation technique was employed to resolve this issue, 
resulting in Eqs. (8). 

One of the main contributions of this paper is to make clear the boundary 
conditions for the model. We consider both cases, with and without a circulation 
system around the electrodes. We state the boundary conditions for each case in 
Section 4 and derived the steady-state solutions in Section 5. Numerical simulations 
were carried out to show that solutions of (8) actually converge to their steady states 
as time goes to infinity. According to our model, cadmium ions are ultimately 
removed from the soil. This is because of our assumption that cadmium ions are 
removed at the cathode. Isoelectric focusing effect is therefore not observed in our 
model. However, in practice, the electroplating reaction may be slow due to high 
concentration of hydroxyl ions near the cathode. Then isoelectric focusing of cad- 
mium ions may be observed for a long time before they are ultimately removed. 
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Appendix 

We now explain the boundary conditions (1 la) and (1 lb). To do that, we have to 
consider electrical double layer which is a thin layer immediately adjacent to the 
electrode surface. In electrode kinetics [16], one often assumes that the following 
Butler-Volmer kinetics holds in the double layer 

i = idexp GVL) - exp ( - v~)l. (A.11 
Here, i. is the exchange current density, qs is the surface overpotential and CI,, CI, are 
known constants. Let us consider what happens at the anode (r,) in our model. 
According to (9), water undergoes irreversible electrolysis reaction. Let El, E2 be the 
externally prescribed electrode potentials at rr and r,, respectively. Then the surface 
overpotentials at the cathode and anode are given by 4(x, t) - El at r1 and 
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E2 - 4(x, t) at r,, respectively. At the anode, the exchange current density i0 is 
proportional to the density of the reactive species which is water. Since water is in 
excess, we may assume that i0 is a constant. The hydroxyl ion is non-reactive at the 
anode. Therefore, the boundary conditions at the anode are 

N2 = - 4g2(E2 - 4(x, t)) at r2, 

N3 = 0 at r2, 64.2) 

where g2 is the function defined on the right-hand side of (Al). 
In our refined model, we have to modify condition (A.2) in order to adopt the 

additional constraint (7). Physically (7) holds because the reaction rate Y, of (5) is very 
fast. Hence, upon production of hydrogen ions at the anode, some of the excess 
hydrogen ions will combine with the hydroxyl ions almost immediately inside the 
double layer. This association reaction in the double layer stops only when there is 
equilibrium between water, hydrogen and hydroxyl ions. Hence, constraint (7) will be 
enforced. We can therefore superimpose reaction (9) with 

yH+ + yOH- + yH20 

to obtain 

(2-y)H20+yOH-+(4-y)H++02+4e-. (A.3) 

From (A.3), the boundary conditions at the anode are 

N2 = - (4 - y)g2(E2 - $6 t) at r2, 

N3 = Ygz(J& - 6(x, t)) at r2. (A.4) 

In the above reactions, y is a function of time and is chosen so that Eq. (7) is satisfied. 
Subtracting the second equation from the first in (A.4) yields Eq. (1 lb). Eq. (1 la) can 
be derived in a similar manner. 
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